A Brief Guide To The
Planning for Outcomes (P₄O) Model

An innovative model for estimating the impact of removing injectables from the contraceptive method mix.

Introduction

Some observational studies have raised concerns about a link between the use of progestogen-only injectable contraceptives, particularly depot medroxyprogesterone acetate (DMPA), and the risk of HIV acquisition. These data are reported in a recent systematic review, which estimated a 40% increased risk of HIV associated with DMPA use. In 2017, the World Health Organization changed the Medical Eligibility Criteria for injectable use among women at high risk for HIV from a 1 (no restrictions) to a 2 (advantages generally outweigh the risks). The ongoing Evidence for Contraceptive Options and HIV Outcomes (ECHO) trial is comparing DMPA, levonorgestrel implant, and copper intrauterine device (IUD) use on risk of HIV acquisition, with results expected in 2019. Depending on the evidence obtained from the ECHO trial, injectable availability could be reduced in countries with high HIV burden.

This modeling work was conducted to assess how restrictions on DMPA use could affect HIV and maternal and child health indicators, and what it might take to compensate for such restrictions.

An innovative model

The Planning for Outcomes (P₄O) Model is focused on near-term – rather than long-term - dynamic impacts of a shift in the method mix. The model uses method-specific pregnancy rates and country-specific method mix data. Further, the model estimates impact on all women of reproductive age, not just those married or in unions.

The P₄O Model features an interactive interface that allows adjustments to the following inputs:

- Country
- Assumed risk (Hazard Ratio [HR]) for HIV infection with injectable use, relative to no contraceptive method
- % of injectable users who stop using the method
- % of previous injectable users who adopt other methods
- How women are reallocated to the existing method mix
- Other inputs of user’s risk (e.g. risk of HIV during pregnancy)
This interactive tool models the changes per year in unintended pregnancies, live births, induced abortions, unsafe abortions, maternal deaths, HIV infections (among women of reproductive age), HIV infected children (from maternal to child transmission), and maternal and neonatal health costs.

Country selection

Countries selected for the model had a high prevalence of injectable use as a proportion of the modern contraceptive method mix, and an adult HIV prevalence greater than 1%. Seven USAID priority countries (highlighted in light blue in the map to the left) were also included.

In total, 22 countries including 20 in Sub-Saharan Africa, Cambodia (USAID priority country) and Haiti met criteria for inclusion.

You can run the model to look at results by individual country, by all countries, or by all sub-Saharan African countries.

Primary data sources

<table>
<thead>
<tr>
<th>Data</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contraceptive prevalence</td>
<td>Demographic and Health Surveys ¹; Multiple Indicator Cluster Surveys ²; Performance Monitoring and Accountability 2020 surveys ³</td>
</tr>
<tr>
<td>Pregnancy rates</td>
<td>Contraceptive Technology ⁴; Family Planning Global Handbook ⁵; Adding It Up (AIU): Investing in Contraception and Maternal and Newborn Health, 2017 (Guttmacher Institute)⁶</td>
</tr>
<tr>
<td>Probability of MTCT</td>
<td>Kuznik et al. (2012)⁷; WHO⁸</td>
</tr>
<tr>
<td>HIV prevalence and ART coverage</td>
<td>UNAIDS⁹</td>
</tr>
<tr>
<td>Maternal mortality</td>
<td>MSI Impact2 calculator (v.4)¹⁰</td>
</tr>
<tr>
<td>Maternal and neonatal health costs; Live births and abortions</td>
<td>AIU⁶</td>
</tr>
</tbody>
</table>
Model overview

The modeling tool allows three options for how injectable contraceptives are replaced in a country:

1. In proportion to the existing, country-specific distribution of other modern methods after excluding injectables.*

2. In proportion to the existing distribution of other modern methods after excluding injectables or permanent methods

3. According to a user-specified mixture of non-injectable methods.

How the model works

Existing Method Mix

- Percent DMPA discontinued
- Sterilization
- User-defined parameters (optional)

New Method Mix (after injectable removal)

- Percent reallocated
- Annual pregnancy rate x number of users (per method)

- Yearly change in unintended pregnancy
- Yearly change in morbidity and mortality

- Live Births
- Abortions
- Unsafe abortions
- Maternal Deaths
- HIV+ Women
- HIV+ Infants
- Infections due to maternal-to-child transmission (MTCT)

*Calculations for option 1 are described in formulae document.
Key Assumptions

- No distinction between DMPA and different types of injectables (i.e. Intramuscular DMPA, subcutaneous DMPA, or norethindrone enanthate [NET-EN])†
- For each country, the pooled HIV incidence among women using contraception is a fixed fraction (default: 10%) of HIV prevalence among WRA§11
- Condom users have additional protection against HIV (default: condoms are 85% effective) §12
- Women using modern contraception or with an unmet need due to withdrawal of DMPA have at most one unintended pregnancy per year
 - stop using method while pregnant
 - contribute either 12 months of risk-time during pregnancy/post-partum (if live birth) or 6 months of risk-time (no live birth)
 - default: no differential risk of HIV during pregnancy (except due to discontinuation of condoms or injectable use §13

†Per current WHO MEC.
§ Assumptions may be modified by user.

Limitations

P₄O is intended to help policy makers, family planning and HIV program planners, and other stakeholders understand the potential impact of a change in injectable contraceptive prevalence on pregnancy and HIV outcomes. As with any model, flawed or implausible assumptions (‘Inputs Panel’) can lead to flawed or implausible outputs (‘Impact Panel’). As such, FHI 360 does not take responsibility for the use or misuse of P₄O. Furthermore, P₄O possesses the following additional limitations:

- Limited to 22 countries
- Does not consider changes over time to:
 - Population size
 - Further shifts in the method mix
 - New interventions to prevent or treat HIV
- Focuses on near-term consequences of reduced injectable use
- Does not target key populations (i.e. female sex workers, discordant couples)
- Does not consider impact of PrEP or condom use, which may differ by contraceptive method
A stepwise guide to using the model

The following pages provide a basic overview of how to use the P4O Model. The interactive model is freely accessible at the following website: https://planning4outcomes.ctiexchange.org/.

Below is a screenshot of the model. The screen is divided into three main sections, featured below.

Navigation panel

- [Model]
- [Instruction]
- [FAQ]
- [Formulae]
- [Data Source References]

Inputs panel

- [Model]
- [Instruction]
- [FAQ]
- [Formulae]
- [Data Source References]

Impact panel

The navigation panel allows the user to navigate between:
- The interactive model
- Frequently asked questions
- Formulae used in the model
- Data source references
- This introductory guide
The grey inputs panel allows the user to modify model parameters. For definitions and more information, hover your mouse over the white boxes and info icon.

The following model parameters are displayed in the panel:

- **Country** – Drop-down menu allows for selection of all countries, all sub-Saharan African countries, or one country at a time.
- **WRA (15-49 y) and HIV prevalence** are the total number of women of reproductive age and overall HIV prevalence in the country(ies) selected. These are not modifiable inputs.
- **HR for HIV (DMPA use)** – The default for this input is 1.0. Any value between 0.5-5.0 may be entered into the white box.
- **Reset** – This button will reset all numeric parameters to default values.
- **% DMPA discontinued/reallocated** – Slide these bars to the percentage of DMPA you wish to remove from the current modern contraceptive method mix, and to the percentage of those former DMPA users you wish to assume are reallocated to the existing method mix.
- **When reallocating to existing method mix** – the user is able to choose between excluding and including sterilization, or indicating a user-specified method mix (see following page for details).
- **Condom Effectiveness against HIV** – Any value between 0-100 may be entered in the white box.
- **HR for HIV in pregnancy** – Any value greater than 0 may be entered in the white box.
- **HIV incidence to prevalence and MTCT Probabilities** – Any value between 0-1 may be entered in the corresponding white boxes.
- **Yearly probabilities of pregnancy** – If “default” is selected, the yearly probabilities of pregnancy are the values presented in *Family Planning: A Global Handbook for Providers (2018 update).* If “user-defined” is selected, a box appears which can be altered by the user (see following page).
For two of the previously defined inputs, the user has the option to designate “user-defined” parameters instead of default values. If selected, the boxes below will appear.

The user may alter how previous DMPA users are reallocated by changing the percentage reallocation per method. Note, the user-specified method mix must equal 100%. An error message will appear if the method mix does not equal 100%.

Impact panel

The Impact panel shows how outcomes are impacted based on the inputs in real time. Some outcomes are depicted graphically, whereas others are summarized in a tabular form. The following graphs and tables serve as an example to demonstrate impact if we assume the HR for HIV (DMPA use) is 1.4 and 50% of existing injectable users discontinue and 40% of discontinuers are reallocated in Kenya, without changing additional default parameters.

Yearly change in unintended pregnancies, live births, induced abortions, and unsafe abortions (a subset of induced abortions), yearly changes in morbidity and mortality, as well as both the modern contraceptive method mix at baseline and after changing inputs are depicted graphically.

Yearly probabilities of pregnancy are pre-loaded with default values. The user can change the assumed probabilities by entering new values in the white boxes.
Impact panel, continued.

The number of previous injectable users reallocated to other modern contraceptive methods and methods to which they are reallocated are also graphically depicted. In this example, most previous injectable users are reallocated to implants (243,816 previous users) followed by contraceptive pills (73,832).

The following outcomes are shown in tables:

- The modern contraceptive prevalence rate and number of users of each method at baseline and after changing inputs.
- The number of HIV infections among women of reproductive age at baseline and after changing inputs.
- The yearly probabilities of pregnancy used in the model calculations for modern contraceptive methods.

A few additional outcomes are depicted at the bottom of the page. Of note, the “break-even point” describes the percentage of previous injectable users who need method reallocation to balance pregnancy outcomes.

References

1. Demographic and Health Surveys. https://www.dhsprogram.com
Key Takeaways

As the world awaits results clarifying the relationship between DMPA use and HIV acquisition, it is important for programs to begin considering downstream implications. In most realistic scenarios (i.e. less than perfect replacement of DMPA with equally or more effective methods), the HIV prevention benefits from decreases in injectable use are outweighed by negative maternal-child health impacts.

Though there may be fewer cases of HIV acquisition among women if DMPA increases risk, there are substantial increases in unintended pregnancies and related outcomes, including: abortions, maternal deaths, and infants with HIV.

Increasing access to highly effective, long-acting reversible contraceptives (LARCs) such as the IUD or implant could help mitigate the impact of reduced injectable prevalence on unintended pregnancy outcomes. However, increased access to LARCs has substantial programmatic, financial, and logistical challenges.

Funding

This work is made possible by the generous support of the American people through the U.S. Agency for International Development (USAID), provided to FHI 360 through Cooperative Agreement AID-OAA-A-15-00045. The contents are the responsibility of FHI 360 and do not necessarily reflect the views of USAID or the United States Government.

Collaborators and Thanks

Elena Lebetkin, MPH
Douglas Taylor, PhD
Xiaoming Gao, MS
Markus J Steiner, PhD
Kavita Nanda, MD, MHS
Laneta Dorflinger, PhD
Timothy Mastro, MD
Abdulmumin Saad, MD, PhD
Jennifer Mason, MPH
Lauren Maldonado, MPH

Contact

Elena Lebetkin (elebetkin@fhi360.org)
Doug Taylor (dtaylor@fhi360.org)